Archive for the ‘Pictures’ category

Seeing Early 20th Century Russia Like a Rover

September 3, 2010

Hello folks! Apologies for the lack of posts lately, I had to go get married and go on a honeymoon! But I’m back now, and adjusting to the real world again. As I sifted through my inbox earlier this week, I came across a link to a fascinating collection of photographs. These are color photos of the Russian Empire taken by Sergei Mikhailovich Prokudin-Gorskii. But wait! How could he have taken color photographs of Russia in 1910 if Kodachrome wasn’t released until 1935?

By taking them like a rover, of course! By photographing the same scene three times, each with a red, green or blue filter, Produkin-Gorskii was able to create realistic color images by using a trio of projectors.This is almost identical to the process used by the MER rovers to acquire color images. The Pancam CCD takes greyscale images through a variety of filters, and these can be used to construct various true- or false-color views of Mars!

The Library of Congress has digitized all of Produkin-Gorskii’s photos of early 20th century Russia, and you can browse them here. Or, you can head over to The Big Picture which recently featured some of the best shots.

The Geology of Glacier National Park: Part 1

August 7, 2010

Well, the field trip is over and I am happy to say that I was not eaten by any bears. They seemed much more interested in the huckleberries.

My adviser and two colleagues and a family of bears.

I am also happy to say that I know a little bit more about the geology of Glacier National Park (and about how to interpret sedimentary geology in general) than I did before I left. The park is famous for its large-scale geography of course: towering mountains and deep valleys carved by rivers of ice. Glaciers tend to form broad U-shaped valleys, while rivers and streams cut V-shaped valleys. Take a look at this picture and you can see glaciers have been involved, even though they are mostly gone now (and the few that remain are disappearing fast: there will be no more glaciers in the park by 2030).

Glacier National Park: soon to be known as "U-shaped Valley National Park".

Despite the spectacular views, we actually spent most of our time in the park with our backs to the vistas, staring intently at rocks that most visitors would pass by without a second glance. Most of the rocks in Glacier are Precambrian sedimentary rocks, deposited around 1.5 billion years ago. The world was a very different place back then, with essentially no oxygen in the atmosphere and no multicellular life. Without large life forms crawling around in the mud of the seafloor (a process called “bioturbation”), the physical processes that shape the sediments are nicely preserved, and I learned a lot about how to interpret their record.

For example, take a look at this ripple:

This symmetric ripple indicates back-and-forth flow of water over the soft mud.

A ripple means that the water was flowing and moving sediment, but you can actually learn more than that based on its shape. This ripple is symmetric, meaning that the water was flowing back and forth, rather than only in one direction. That tells us that it didn’t form in a stream, but more likely due to the movement of tides or waves.

Here’s another interesting feature:

You can see that the layers here aren’t parallel – there’s a lens of material with a relatively flat top, but a curved lower portion that cuts into the underlying layers. This is a little channel, carved into the lower sediments while they were still soft and filled with coarser material!

The coarseness of the sediment tells you a lot about the environment where it was dropped. It takes a much faster, more energetic flow to carry rocks than it does to carry sand. Silt and mud will stay suspended in all but the most tranquil of bodies of water, so what happened here?

This location is actually much younger cretaceous rock outside the park, where the ancient Precambrian mountains have been broken down and deposited in a floodplain. (lots of dinosaur bones have been discovered in other outcrops of this cretaceous rock, but alas, we didn’t find any) There has been some crazy deformation in this area, tilting the layers so that they are almost vertical, but you can still see striking evidence of different environments here. This spot actually shows another much larger example of a channel, filled with big green and red rocks. (The channel is the coarse layer behind the geologist in the picture that narrows as you go upward) The size of the rocks in this channel means the water must have been flowing pretty fast to move them. But you can see that other parts of the same outcrop are very different. The tan stuff is extremely soft, and when you crush it between your fingertips, it turns into a powder with grains far too small to see or feel.

This soft stuff could have been emplaced when the river carrying the larger rocks flooded its banks, dumping its sediment as it stagnated in the floodplains. This same process is why places like the Nile river valley are so fertile. It’s not a sure thing that the fine-grained stuff came from a flooding river though. It could also be fine ash from a volcanic eruption (a more likely scenario for Mars!).

There’s a lot more cool geology to show you from the park, but this post is long enough, so I will leave you with a puzzle. Take a look at this bizarre rock texture that we saw all over the park:

What is going on here?

What do you think it is? We were asked the exact same question by our field trip leader to get us to practice explaining completely unknown rock types, something that could very well happen on Mars. Stay tuned for my next post where I’ll attempt to explain what this texture is!

MSL Roves!

July 27, 2010

I’m a little late on this, but I thought I should share the news: MSL now has a good head and neck on its shoulders, and has officially “roved”. Last week, engineers at JPL installed the “Remote Sensing Mast”, bringing MSL’s total height up to nearly seven feet tall (2 meters). Also, MSL drove for the first time in the clean-room where it is being assembled! Here is a 3D photo of the rover just prior to driving, taken by Kris Capraro:

And then, to celebrate the momentous occasional, one of the JPL engineers busted out the dance moves. Specifically, The Robot:

HP dv6t Select Edition Notebook Review: First Impressions

July 24, 2010

Please excuse me while I geek out about my new laptop…

My work now involves some really significant number crunching, to the point that I was regularly using all the CPU and RAM of my previous laptop, and was then struggling to get anything else done while the calculations were running. And then they would crash. It also helps that I will soon need to renew the license on one of the programs that I use, and the student price is only available for a given CPU once. And of course, there’s a game coming out on Tuesday that I really wanted to be able to play.

I decided from the outset that I was going to aim for a high-end system this time. I spend a ridiculous amount of time in front of my laptop, for both work and fun, so I wanted a quality machine. After lots of web-searching and comparing, I decided on the HP dv6t Select Edition. It had impressive specs, and there was a $400 coupon to sweeten the deal. Here are the full stats:

  • Processor: Intel Core i7-840QM processor (1.86GHz, 8MB L3 Cache) with Turbo Boost up to 3.2 GHz
  • Windows 7 Home premium 64 bit
  • Hard Drive: 500 GB 7200 RPM
  • RAM: 8 GB
  • Screen: 15.6″
  • Resolution: 1366×768
  • Approximate weight: 5.5 lbs
  • Graphics: 1GB ATI Mobility Radeon(TM) HD 5650 Graphics + HDMI and VGA ports – For Quad Core Processors

The computer arrived on Thursday, so I’ve had a little time to get it set up and get used to it. Here are my first impressions:

First of all, this is the sexiest computer I’ve ever owned. I really like the (mostly) metallic case and the subtle texture on the lid and hand rests. I saw somewhere that similar HP designs had a “pinkish” hue to the metal, but the dv6t SE definitely does not.The computer also feels solidly built, with no “wiggle” in the screen hinges and no flexing when picked up by the corner.

Click for a closer view of the lid texture.

Also, I love the “chiclet” keyboard. It just feels good to type things on it, and it is big enough that I don’t feel cramped at all. If you’re considering this laptop, I highly recommend paying the $25 more for the backlit keyboard. I didn’t realize how useful this feature would be, but I have used it quite a bit.

I do have a few complaints. The biggest problem is the track-pad. For some reason, HP decided to forgo having separate buttons to click and instead made the lower left and right corners of the track-pad clickable. This would be ok, except that those areas also still work as a tracking surface. When I’m using the track-pad I like to have one hand pointing and the other clicking, but this doesn’t work so well when the buttons also act as the pointing surface. Also, you have to push the corner “buttons” down a lot harder than I’d like. The track-pad is also supposedly multi-touch sensitive. I haven’t played with this feature much, but have found it to be pretty unresponsive and therefore useless for scrolling around web-pages and documents.

The trackpad is the worst feature. Click to see its weird all-in-one buttons and the nice texture of the hand-rests.

Basically what I’m saying is that if you get this computer, be prepared to use a wireless mouse. That’s what I normally do anyway so the trackpad is not that big a deal for me.

Another very minor complaint is the row of keys on the far left side of the keyboard. I am used to the control button being the lowest left one, but on this laptop, to the left of ctrl is a button that brings up a calculator program. I find myself occasionally hitting the wrong button and having a calculator pop up instead of, say, copying text with ctrl+C.

One other downside is that it does come with quite a bit of HP crap-ware. But most computers come pre-loaded with software that you’ll never use. Once you get the worst offenders uninstalled or at least turned off, it’s fine.

I really like the keyboard, though I sometimes hit the calculator button instead of Ctrl.

Other factors that might be a problem for some users are heat and battery life. I sprang for a very fast Intel i7 Q840 processor, which puts out a lot of heat when it is working hard, and eats up battery life. I haven’t formally tested the battery, but I wouldn’t count on more than 2 hours. Again, that’s not a big deal for me because I almost always use my laptop near an outlet. And my previous laptop’s battery life had dwindled to about 7 minutes, so this is luxury for me! There is a larger battery than the one I have, so there’s always that option if you’re considering this laptop and want more battery life. The computer itself is very sleek but I was surprised at how chunky the power adapter is. Both the cord and the brick are pretty hefty. Again, this might be an issue for some but not a big deal for me: I’m used to my slightly-heavier Toshiba with a less-bulky AC adapter so the total weight will be similar.

Here's a close-up of the light-up HP logo and texture on the back.

Coming back to heat: yes, this computer runs hot. For normal use it’s warm but not uncomfortable to use on your lap, but if you’re doing anything CPU-intensive, this computer (and any notebook really) should be on a hard surface to allow plenty of air-flow. When I was running work programs, it got mighty toasty.

But holy cow is it fast. It’s noticeably zippy at basic usage tasks, like installing and opening programs, but what really blew me away was using it for work. Not only is it faster, but since I got the 64-bit Windows 7 with 8 gigs of RAM, it easily was able to load my entire dataset for work without breaking a sweat. My previous laptop had to break the data into chunks and half the time would crash if I tried to load too much of it at once.

Bottom line, I am really loving this computer. It looks and feels really nice and has awesome performance to match. The only major downside is the trackpad, and I typically use a mouse anyway so it isn’t a big deal for me. There are some other nitpicks, but overall it is very nice. If you’re looking for a powerful, good-looking notebook computer, I recommend the HP dv6t Select Edition. Especially if you can find any special offers from HP (the coupon I used has expired, but they seem to do a lot of coupons, so look around if you’re considering buying from HP!)

And finally, here is a view of the bottom, which is black plastic rather than metal. I had a hard time finding bottom views when I was shopping for laptops, so hopefully this will be helpful for others:

Big Pictures: Space Shuttle and Mount St. Helens

May 18, 2010

The Big Picture has been on a roll lately, with two sets of particular interest to planetary and space-types. First, is the feature on the final launch of the space shuttle Atlantis last week:

Second, today is the 30th anniversary of the explosive eruption of Mount St. Helens, and there are some amazing photos that show the devastating power of a volcanic eruption:

Shuttle Silhouette

February 15, 2010

Sorry for the lack of updates in the past week. Things are a bit busy right now as I try to crunch numbers in time to finish a poster for a conference and finish a fellowship renewal (luckily they rely on the same results). Meanwhile, enjoy this excellent photo of the space shuttle taken from the ISS.

Model Mars Landscapes!

January 25, 2010

Check out these spectacular new photos of Mars! It certainly looks like the rovers have stumbled upon some more interesting terrain! The only catch is, these aren’t pictures of Mars at all, they are photographs of models made of, among other things, paprika, chili powder, and charcoal. They are the work of Matthew Albanese, and you need to go check out some of his other photographs. There are steel-wool tornadoes, faux-fur fields, and this spectacular glowing volcano:

(Hat tip to Ann Martin, fellow Cornell Astronomer and blogger at the ALFALFA blog for sharing the link to these pictures!)

How to cure the Avatar Blues

January 12, 2010

I was innocently browsing through my twitter list yesterday when I came across this article on CNN. The gist of it is that many people are experiencing depression after watching Avatar because the fictional world depicted is so beautiful and amazing that life back here on earth seems drab and boring.

Many people have responded to this story with shock and derision, and this definitely hints at some pre-existing issues for the folks who are feeling suicidal after watching a sci-fi film, but it also concerns me for another reason. It suggests a troubling lack of knowledge about the real world.

One person quoted in the article said: “When I woke up this morning after watching Avatar for the first time yesterday, the world seemed … gray. It was like my whole life, everything I’ve done and worked for, lost its meaning. It just seems so … meaningless. I still don’t really see any reason to keep … doing things at all. I live in a dying world.”

This really bothers me, because despite all the nasty things that humans have done to the world, it is a far cry from a dying world! (And if our world really is “dying” then shouldn’t we be out there trying to save it rather than despairing?) I can tell you this: studying other planets makes you realize that Earth is a paradise. And believe it or not, many of the “creative” flora and fauna in Avatar are based directly on living things here on Earth, past or present.

Remember those glowing spiral “plants” that Jake taps, causing them to curl up into their stem in the blink of an eye? They’re real! They exist in miniature in coral reefs around the world as “christmas tree worms”.

Jake Sully walks in awe through a glade of giant christmas tree worms.

Actual christmas tree worms in Bonaire.

What about those glowing mushrooms that he plays like drums? Yeah we’ve got those. Again, much smaller, but similar.

Glowing mushrooms really exist too!

And of course the seeds of the Tree of Life are obviously based on real-world jellyfish. James Cameron is a guy who knows all about the weird living things on our planet. Heck, have you seen his documentary “Aliens of the Deep”? It’s pretty obvious where he got some of his inspiration for the creatures in Avatar!

A deep-sea jellyfish from Cameron's "Aliens of the Deep".

Ok, but what about the sweet dragon-like creatures that they ride? I think people would notice if we had those flying around, taking out our helicopters and planes! Well no, they don’t exist now, but go back to the mesozoic and there are plenty of flying creatures, including this one which was taller than a giraffe when on the ground:

And how about good old Quetzalcoatlus, with a 30 foot wingspan?

Quetzalcoatlus had a wingspan comparable to some airplanes. The silhouette should look familiar to anyone who has seen Avatar...

So that’s the biology, but what about the moon itself? What about the floating mountains? The spectacular rock formations? Well, habitable moons probably do exist, and there are astronomers searching for them right now. Floating mountains would be rather difficult, but superconductors do, in fact, allow things to levitate. Take a look at Joe Shoer’s post about Avatar’s floating mountains if you don’t believe me. And the rock formations? Well, Earth doesn’t have arches of rock following magnetic field lines like iron filings, but we do have some pretty spectacular stuff, like caves full of giant crystals:

Spectacular crystal formations? Yeah, we've got that.

My point is this: yeah, it’s a shame that Pandora isn’t real. I was sad too when the movie ended and the credits rolled. But the world we live in is just as amazing. You won’t get rid of the Pandora blues just by watching Avatar endlessly, or running out and getting the Avatar video game. But much of what was in the movie was based on real things here on Earth. Many of the photos I’ve shown here are relatively recent discoveries. There is plenty of wonder to go around and plenty more to discover. And if you get tired of Earth, there are other planets in our solar system. Tired of those? Check out exoplanets. Still not enough? Head into the realm of astrophysics and you’ll never get bored. And for those longing to live like the Na’vi there are options too. Anthropologists regularly study native cultures and learn their ways. Or you could become an archaeologist and learn about past cultures by studying their artifacts.

Still not enough? Well, then instead of living in someone else’s fictional world, why not make your own? Become a science fiction or fantasy writer and see if you can do better than James Cameron. Who knows, maybe someday people will see your world and long to go there too.

Avatar’s vivid world should not be a source of depression, it should be a motivation to seek out (or create) the beautiful and the interesting and the fragile in our own world, to study and learn from it, and to preserve it so future generations can experience the wonder as well.

Life on Mars?!

December 1, 2009

On August 6, 1996 NASA announced that scientists at the Johnson Space Center had found evidence for life on Mars, and everybody went crazy.

Yesterday, NASA announced two new papers by the same scientists at the Johnson Space Center claiming that they have found strong evidence of life on Mars. For the most part, there hasn’t been much of a reaction. No presidential press conferences, and only a few headlines. What gives?

Well, I suspect it is partially due to the fact that one of the papers is very long and esoteric, but even more this might be a case of “the boy who cried wolf”. This is the same research group saying, on the face of it, essentially the same thing more than a decade later. Still, these are respected scientists, and the fact that they are standing by their claim after all this time means they must be pretty confident. That’s why I decided to take a look at the two papers in question.

The first paper is a 47 page beast entitled “Origins of magnetite nanocrystals in Martian meteorite ALH84001“. And really, that’s what it is about. Biology only makes a few brief cameo appearances; for the most part this paper meticulously describes the study of the magnetite crystals in the famous ALH84001 meteorite. The significant thing about this paper is that they suggest that the magnetites could not have formed by alteration of the materials in the meteorite.

Magnetite crystals (highlighted in pink) can be formed by some types of bacteria on Earth. Source: NASA

Back in 1996, magnetite crystals were proposed as evidence of martian microbes because some types of terrestrial bacteria form perfect, pure magnetite crystals in their guts. However, other scientists proposed hypotheses by which the magnetites could form when carbonate minerals in the meteorite were heated. This latest paper disagrees with that idea, pointing out that the magnetites in the meteorite have a completely pure composition, but the carbonate, from which they are supposed to have formed, has other elements in it that don’t appear in the crystals. The authors argue that since the crystals don’t show those contaminants, they must not have formed from the carbonates. Here is their conclusion:

We suggest that the majority of ALH84001 magnetites has an allochthonous origin and was added to the carbonate system from an outside source. This origin does not exclude the possibility that a fraction is consistent with formation by biogenic processes, as proposed in previous studies.

There you have it! It is possible that a fraction of the magnetite crystals are not inconsistent with life on Mars!

Ok, so that’s not exactly a resounding “yes”. I think the authors were being very conservative in this paper. In a companion paper entitled Life on Mars: New Evidence from Martian Meteorites, they show their feelings a little more. They give a concise and fairly readable summary of their original hypothesis and the subsequent alternatives that people have proposed and which in turn have been addressed. They also provide an easy-to-understand pdf slideshow summarizing their findings.  At this point, people seem to agree that the carbonates in the martian meteorites formed on Mars, as did the few organic molecules detected in them. With the magnetite paper, the authors consider the various hypotheses about creating magnetite by heating to be disproved, leaving an organic origin as the best explanation.

They point out that on earth, pure magnetite crystals with the specific shape and properties of the ones found in ALH84001 would be considered definite biomarkers:

The unique properties of these magnetites (elongated along the c-axis, single domain grain size, extremely pure Fe oxide, tightly sorted grain size distribution) remains a suite of properties absolutely unique to magnetotactic magnetites on Earth.

The “Life on Mars” paper also shows lots of examples of electron microscope images of “biomorphs” in multiple Mars meteorites. Biomorphs are like mini-fossils. Some of them might be actual preserved remnants of single-celled organisms, while others are pits and textures formed by long-gone bacteria colonies. Picture them as the microscopic equivalent of finding fossil dinosaur tracks. They also make the case that the observed biomorphs show influence on the shapes of the minerals of the meteorite, suggesting that they formed long ago on Mars rather than more recently on Earth.

Biomorphs from Storrs Lake, Bahamas and the Yamato 000593 mars meteorite from Antarctica. Source: NASA / McKay et al., 2009

I’ll admit, a lot of their biomorphs look like bacteria, and they show examples of biomorphs from Earth that look quite similar.  But many of their examples don’t look like much to me. Granted, that may be due to an untrained eye and overactive skepticism.

Biomorphs from two Mars meteorites (top and right) and a terrestrial basalt (bottom left). NASA/McKay et al., 2009

From the McKay et al. paper: "Closeup view of a Nakhla biomorph partially embedded in an iddingsite matrix. Clearly, these two phases were formed at the same time; their texture shows the influence of the biomorph form on the shape of the iddingsite. We interpret this biomorph as the remains of a Martian microbe."

So, what does it all mean? Is this evidence for life on Mars? I give it a definitive “maybe”. It’s clear that the debate is far from over, and I expect to see some interesting rebuttal papers in the next few years. There’s a fine line to walk here. If this really is evidence of life on Mars, we should be shouting it from the rooftops! But it is so easy to trick ourselves into seeing what we want to see that we have to be cautious. Carl Sagan summed this up nicely: “Extraordinary claims require extraordinary evidence.” Right now I think the evidence is not extraordinary, but it may be getting there.

ResearchBlogging.org
Thomas-Keprta, K., Clemett, S., McKay, D., Gibson, E., & Wentworth, S. (2009). Origins of magnetite nanocrystals in Martian meteorite ALH84001 Geochimica et Cosmochimica Acta, 73 (21), 6631-6677 DOI: 10.1016/j.gca.2009.05.064

David S. McKay, Kathie L. Thomas-Keprta, Simon J. Clemett, Everett K. Gibson, Jr., Lauren Spencer, & Susan J. Wentworth (2009). Life on Mars: New Evidence from Martian Meteorites Instruments and Methods for Astrobiology and Planetary Missions XII http://www.nasa.gov/centers/johnson/pdf/403089main_7441-1.pdf


Flying over Enceladus

November 22, 2009

Check out this awesome animation from the November 21 flyby of Enceladus (via the Planetary Society Blog). Remember, these are actual pictures, taken by an actual spacecraft! I’m constantly amazed at how close the Cassini team can get to Enceladus. This is the sort of cool fly-through I’d expect to see in the opening sequence of a Star Trek episode or something. To see it in real life is just spectacular.

Credit: NASA / JPL / SSI / animation by Gordan Ugarkovic

PS – Remember to vote for my MSL: Mars Action Hero article! November 23rd is your last chance to vote!